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Markov models from data by simple nonlinear time series predictors in delay embedding spaces
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~Received 19 July 2001; published 15 April 2002!

We analyze prediction schemes for stochastic time series data. We propose that under certain conditions, a
scalar time series, obtained from a vector-valued Markov process can be modeled as a finite memory Markov
process in the observable. The transition rules of the process are easily computed using simple nonlinear time
series predictors originally proposed for deterministic chaotic signals. The optimal time lag entering the
embedding procedure is shown to be significantly smaller than the deterministic case. The concept is illustrated
for simulated data and for surface wind velocity data, for which the deterministic part of the dynamics is shown
to be nonlinear.
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I. INTRODUCTION

Predictability of observed aperiodic data beyond their l
ear correlations is usually interpreted as a signature of de
ministic structure. Based on the idea of reconstruction
phase spaces from scalar time series and on the hypothe
deterministic chaos, the tools of nonlinear time series an
sis allow one to evidence, characterize, and exploit determ
ism underlying the dynamics of the observable@1#. Unfortu-
nately, deterministic chaos is only one possible origin
complex aperiodic time series, and intensive studies
formed in the last years yielded ample evidence to show
the overwhelming majority of all real world data sets do
not belong to this class. Typical phenomena of interest s
as weather, climate, economy, biology or physiology eit
involve too many degrees of freedom to be resolved fr
scalar data, or the deterministic evolution of some mac
scopic degrees of freedom is driven by the noise produce
other degrees of freedom. Therefore, often a nonlinear
chastic approach seems to be more appropriate. Recen
has been shown that in certain situations nonlinear Lang
equations and Fokker-Planck equations can be derived f
data@2#. It seems, however, that this procedure is restric
to Langevin equations with rather few degrees of freedo
Furthermore, one needs to record simultaneous meas
ments of all relevant degrees of freedom of a system in o
to derive the equations of motion. Since this is an unreali
starting point, we want to follow the spirit of embedding
scalar data. In this paper, we analyze the nature of the in
mation stored in a scalar time series from a possibly mu
dimensional stochastic dynamical system, e.g., a multivar
Langevin equation. We propose a simple prediction sche
that can be interpreted as a Markov model for the observa

In many data sets enhanced predictability was found
using nonlinear models living in reconstructed phase spa
In fact, Casdagli@3# was even using the different predictiv
power of models ranging from local linear~i.e., globally
nonlinear! to global linear ones in order to determine t
degree of nonlinearity and determinism in data. If aperio
data are best predictable by global linear models such
autoregressive processes~AR models!, the best physical de
scription is indeed the one given by such a process. If
contrast, local linear models are superior, then there mus
1063-651X/2002/65~5!/056201~12!/$20.00 65 0562
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some structure in phase space to achieve this, despite
much reduced statistical robustness because of the loca
This structure is usually interpreted to be deterministic.

In this paper, we show that locally constant predictors
time delay embedding spaces are the natural way to extra
particular nonlinear stochastic process, namely, a Mar
model of nontrivial orderm.1 from observed scalar data
We introduce the prediction scheme, present its theoret
justification, discuss its essential parameters, and discus
performance for numerically generated data. Finally, e
ploying it to experimental time series data from surface w
velocities, we will show that locally constant predictors c
be used to extract the nonlinear deterministic dynamics
boundary layer turbulence.

With the goal of modeling the stochastic systems, P
parellaet al. @4# have successfully employed local predicto
in reconstructed phase spaces for long-term simulations
the present paper does, Ref.@4#, relies on the extraction o
the probability density function of the future value from da
As we will recall, in general modeling is different from pre
dicting, and we will discuss the differences in Sec. III.

II. LOCALLY CONSTANT PREDICTORS AND MARKOV
MODELS

The meanwhile classical approach of nonlinear time
ries analysis is the assumption that unpredictability and a
riodicity in data has its origin in a deterministic, chaotic d
namical system in some phase space. The scalar time s
obtained by physical measurements is then a~nonlinear! pro-
jection of the phase space vectorsxW (t) onto the real numbers
sn5h@xW (t5nD)#, where D is the sampling interval. The
concept of embedding@5,6# affirms that in the time delay
embedding space of vectorssWn5(sn ,sn2t , . . . ,sn2(m21)t)
(m sufficiently large!, equations of motion of the form
sn115g(sWn) exist. The functiong can be reconstructed from
the observed data under the assumption of its smoothn
where the pioneering work of Farmer & Sidorowich@7# in-
troduced locally constant and locally linear approximatio
of g. In the remainder of this paper, we shall use the form
and modifications thereof. First, a neighborhood diametee

has to be fixed and neighborhoodsUn of sWn by Un
©2002 The American Physical Society01-1
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MARIO RAGWITZ AND HOLGER KANTZ PHYSICAL REVIEW E 65 056201
5$sWk : uusWk2sWnuu<e% are formed. The locally constant pre
dictor for the unobservedsn11 is then

ŝn115
1

uUnu (
sWkPUn

sk11 , ~1!

the mean of the ‘‘futures’’ of the neighbors. This is the ma
mum likelihood estimator ofŝn11 under the assumption o
Gaussian errors and a functiong(sW) that is constant forUn ,
hence the name ‘‘locally constant predictor.’’ It can b
straightforwardly generalized to a locally linear predictor
replacingg(sW)5const byg(sW)5a•W sW1b, an affine function.

The superiority of this locally constant or the locally lin
ear fit over a global linear model@an autoregressive model o
mth order AR~m!# of the form

xn115(
i 51

m

aixn2( i 21)t1jn11 ~2!

is usually interpreted as an indication for nonlinear determ
ism in the data, formalized, e.g., by the Casdagli test@3#.
Here, the AR~m! model is a linear stochastic model, drive
by random inputsjn , which produces noise-driven dampe
harmonic oscillations@8#.

A scalar Markov process ofmth order in discrete time is
defined by the fact that for any sequence of successive ti
t1 ,t2 , . . . ,tn with n.m all transition probabilities fulfill

p~yn11 ,tn11uyn ,tn ;yn21 ,tn21 , . . . ,y1 ,t1!

5p~yn11 ,tn11uyn ,tn ;yn21 ,tn21 , . . . ,yn2m11 ,tn2m11!,

~3!

i.e., the transition probability depends on the lastm events
only. Since the values of these transition probabilities can
arbitrary, such a Markov model is much more general th
the AR~m! model mentioned above.

The purpose of this paper is to show that the locally c
stant predictor, originally based on the assumption of de
minism, is in fact a particular predictor based on a Mark
assumption. Its superiority with respect to a linear stocha
model can thus as well mean that the data are generated
Markovian, nonlinear stochastic model. Apart from the co
ceptual difference, this has implications on the issue of m
eling versus prediction: for a Markov model with no
d-shaped transition probabilities, modeling and predicti
are largely different tasks. But for nonstandard cost functi
too, modified predictors can be useful.

First, we observe that the independent variables ente
the transition probabilities of Eq.~3! are exactly the element
of a delay vectorsWn , if we identify the times with the corre
sponding integer multiples of the sampling interval,tk5kD.
The timestk will, therefore, be suppressed in the followin
and the transition probabilities will be denoted b
p(yn11uyW n). In order to extract these probabilities from da
we have again~as in the deterministic case above! to make
the assumption that their dependence onyW is smooth. Then it
is reasonable to use the following approximation:
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p~yk11uyW k!' p̂~yn11uyW n! ; yW kPUn , ~4!

i.e., we use again a locally constant approximatio
p̂(yn11uyW n) can be estimated from the observed values
yk11, the ‘‘futures’’ of the elementsyW kPUn , which form a
sample according top̂(yn11uyW n).

In the deterministic case with sufficiently largem, the
transition probabilities ared shaped,p(yn11uyW n)5d„yn11

2g(yW n)…, and the estimate of Eq.~4! yields some narrow
distribution, provided the neighborhoodUn is not too large in
diameter. For a truly random setting this distribution mig
be broad and~if the sampling intervalD is relatively large!
even multimodal. In this latter case, the way how the kno
edge of a sample ofp̂(yn11uyW n) is evaluated depends on th
purpose.

When prediction is the goal, a typical cost function
be minimized is the mean squared prediction errore2

5((yn112 ŷn11)2. The best predictor is then the mea
ŷn115*yn118 p(yn118 uyW n)dyn118 , i.e., exactly the locally con-
stant predictor given by Eq.~1!. Depending on the shape o
p(yn11uyW n), the mean can be a value unlikely to be attain
by yn11, and an iteration of this prediction scheme can yie
a quite atypical sequence ofy’s, drastically different from the
behavior of the true data. Modeling thus would require
choose a value at random from the observed distribut
This method was called local random analogue prediction
Ref. @4#. In cases where the mean value ofp(yn11uyW n) is a
particularly bad representative of the full distribution, mo
eling and prediction are hence two very distinct tasks.
such cases, it makes sense also to discuss other cost
tions for predictions. If on the average the error should
often be positive as negative, the median is the optimal p
dictor. If we want to penalize large errors to their extrem
the cost function would be the maximum of all errors mad
In this case, the optimal prediction isŷn115 1

2 (ymax2ymin),
whereymax/min are the largest/smallest values ofz for which
p(zuyW ) is nonzero.

Regardless of which cost function one uses and irresp
tive of whether the process is assumed to be stochasti
deterministic, the width of the distributionp(yn11uyW n) is a
direct measure for the accuracy of the prediction: The m
spread there is among theyk11, the larger is the local insta
bility, and hence the larger might be the deviation ofyn11
from the mean of this distribution. This is illustrated in Fig.
for a deterministic chaotic model with measurement no
~where the spread is related to the position dependent e
nential divergence of nearby trajectories, sometimes ca
local Lyapunov exponents!, and for data from a nonlinea
Langevin equation. We hence propose to use the varianc
the transition probability distribution as a criterion for th
reliability of the actual prediction.

III. WHEN IS A SCALAR OBSERVATION FROM A
MULTIVARIATE LANGEVIN EQUATION MARKOVIAN?

If the hypothesis about a scalar time series is that it r
resents one observable from a vector-valued determin
1-2
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MARKOV MODELS FROM DATA BY SIMPLE NONLINEAR . . . PHYSICAL REVIEW E 65 056201
system, the above-mentioned embedding theorems allow
to reconstruct a vector-valued space, the time delay em
ding space, in which determinism is restored. The co
sponding problem for Markov processes is the followin
Given is a vector-valued, multidimensional Markov proce
and a single observable. Does the time series of values of
observable represent a scalar Markov process of some fi
order m in time? Although this question is typically no
posed, the general answer is well known to be negative@9#.
Nonetheless, since in time series analysis one usually n
has observations in the full phase space, this is a rele
issue that will be discussed in some detail in this section

To make the relation to the deterministic setting as cl
as possible, we assume as a generator of the Markovian
namics a Langevin equation of the type

xẆ5 fW„xW~ t !…1G„xW~ t !…GW ~ t !, ~5!

which is the generalization of a continuous time dynami
system, with an additional stochastic forceG„xW (t)…GW (t),
where GW (t)PRl with ^Gk(t)Gk8(t8)&5dk,k8d(t2t8) as a
l-dimensional Gaussian white noise andG(xW ) a
(n3 l )-dimensional matrix function. For an-dimensional
state space with state vectorsxW (t)5„x1(t), . . . ,xn(t)…, Eq.
~5! defines a Markov process of ordern. For the determinis-
tic limit G(xW )[0, the embedding theorem of Takens sta
that one can reconstruct the dynamics of the multidim
sional process by using subsequent values of just a si
scalar observableh@xW (t)#. Does a similar procedure exist fo
the multidimensional process generated by the Lange
equation? Can the information contained in t
n-dimensional state vectorxW (t) somehow be reconstructe
by measuring onlys components withs,n, at subsequen
times, employing a finite memory of those? In general
answer to this question is no. One cannot expect that

FIG. 1. The mean prediction error,A^( ŷn112yn11)2&, as a

function of the standard deviation of the distribution ofp(yn11uyW n).
Continuous line, chaotic time series of the Lorenz system@Eq. ~9!#
with additive measurement noise; dashed line, noise-driven Duf
oscillator @Eq. ~6!#.
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knowledge of only a few components is sufficient to fix t
future probability distribution completely, not even for on
of theses components.

However, we will demonstrate here that in certain situ
tions the dynamics in a delay embedding space of a sin
observable is Markovian, and in many more situations it
approximately Markovian in the sense that the memory,
beit formally infinite, can be assumed to be finite in the se
that the errors thus introduced are smaller than the mode
errors stemming from the fact that all information about t
process is extracted by statistical means from a finite amo
of data.

Whether or not a scalar measurement from a multidim
sional Langevin equation is Markovian depends on the s
tem as well as on the measurement function. Let us fi
consider a simple example. The Duffing system

dx

dt
5v~ t !,

dv
dt

5av~ t !2x3~ t !1x1bG~ t ! ~6!

describes the stochastic motion of a damped particle i
double well potential, wherev(t) is the velocity andx(t) the
position of the particle. This equation defines a Markov p
cess of order 2 in (x,v). The particle keeps moving throug
the stochastic kicksG(t). The change in the velocity of the
particle is determined by the stochastic inputs as well as
the position of the particle. As argued by van Kampen@9# the
position of the particle depends on the velocity at all pre
ous times. Therefore, the velocity possesses an infi
memory. One has to know the velocity at all former times
order to determine the probability distribution for its futu
value. In the deterministic case~without stochastic forcing!
the reconstruction relies on the fact that the second equa
of Eq. ~6! can be solved forx if a sufficient number of de-
rivatives ofy is given. This inversion property breaks dow
if the stochastic force is added and one, therefore, ha
resolvex from the first equation in Eq.~6!.

In the limit of dt→0 the x coordinate fulfills a second
order Markov property, i.e., knowing the position at tim
t2dt andt is sufficient to estimate the probability distributio
of its next value. This is due to the fact that the knowledge
x(t2dt) and x(t) gives an estimate for the velocityv(t),
and knowing the position atx(t22dt) does not supply any
additional information. In all cases where we speak about
Markov property for a discretely sampled observable o
time continuous system we implicitly refer to the limitd→0.

Applying the same arguments one can, for example, a
understand the effect of dynamical noise coupled into
Rössler and the Lorenz systems. If thez variable of these
systems is driven by noise one finds that thex coordinate is
a Markov process of order 3 whereas they coordinate pos-
sesses an infinite memory.

As a first example to investigate numerically, let us co
sider the noise-driven van der Pol oscillator that has a sta
limit cycle as asymptotic solution

g

1-3
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MARIO RAGWITZ AND HOLGER KANTZ PHYSICAL REVIEW E 65 056201
ẋ5y~ t !1aG~ t !,

ẏ5@r 2x~ t !2#y~ t !2x~ t !1bG~ t !. ~7!

The system was modeled by driving either the first or
second equation by the white noise inputs with unit varia
~properly rescaled by the square root of the step width of
Euler integrator in the numerical simulation!. So the param-
eters are either (a,b)5(0.5,0) or (a,b)5(0,0.5) and r
53.0. In the case where the second equation is driven by
noise (a50), thex coordinate is a Markov process of seco
order in time. Deriving the first equation with respect
time, substitutingẏ by the second equation, and replacingy
by the use of the first one leaves us with a stochastic dif
ential equation of second order in time for the variablex,
which generates the Markov process.

Employing the same arguments as before, this gives
to three different situations that we want to analyze num
cally in the following: ~a! The noise is added to an unob
served variable but the Markov property is valid for the o
served coordinate.~b! The noise is added to the observ
variable and hence destroys the Markov property.~c! The
noise is added to an unobserved variable and the obse
variable is not Markovian.

Let us first have a look at the reconstructed phase sp
for these three situations: For the case where the nois
coupled to the second equation, we show in Fig. 2~a! the
phase portrait using thex variable for the embedding. In Fig
2~b! we show the phase portrait in the case where the nois
coupled to the first equation, again using thex variable for
the embedding. In Fig. 2~c! the noise is again added to thex
variable but this timey is used for the reconstruction. In th
first case we see only small deviations from the limit cyc
The second portrait appears like a random walk added to
limit cycle, whereas in the third plot the original limit cycl
seems to have additional nontrivial structure.

These three cases will now be analyzed by means of
above introduced locally constant predictors. We will p
form predictions as outlined above by varying the emb
ding dimension and the time delay. Usually, while increas
the embedding dimension one has to use larger neighborh
diameterse in order to collect a certain number of neighbo
in Un . This might penalize higher-dimensional embeddings.
In order to rule out such an effect we require the same fi
number of neighbors within a fixed diameter of the neighb
hood for each embedding dimensionm and each time delay
d, and vary the length of the time series within which t
neighbors are sought for~we run through the time serie
backward in time until a certain number of neighbors ha
been found!.

The result of the predictions is shown in Figs. 3~a!–3~c!,
where the prediction error~normalized by the standard de
viation of the data! versus the time delayt is shown for
different embedding dimensions. We identify differe
memories of the time series depending on the way the n
is coupled into the system. For the first case~a!, we find that
the minimum of the prediction error does not depend on
embedding dimension form>2. In addition, the optimal em
05620
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bedding window, i.e., the time interval (m21)t spanned by
a delay vector with optimalt, is independent ofm for m
>2, hence confirming that a second-order model is su
cient. In contrast we find for case~b! that the prediction error
decreases for increasing embedding dimensions—each
mension adds information when predicting the future pro
ability distribution. The improvement, however, amoun
only to a small percentage of the total error. If we drive thex
coordinate by the noise inputs and record they coordinate~c!
the y coordinate seems no longer to be Markovian. We fi

FIG. 2. Two-dimensional projection of the phase portrait of t
van der Pol system for different configurations of the noise driv
and different variables used for the embedding.
1-4
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MARKOV MODELS FROM DATA BY SIMPLE NONLINEAR . . . PHYSICAL REVIEW E 65 056201
higher-order memories in this variable. The improvement
ing higher-dimensional embedding is even significantly b
ter than for the actually noise-driven variable~b!.

To study the difference between these three cases
means of a well established approach for stochastic dyna
cal systems we will now use the concept of coarse grai
dynamical entropies@10#. More precisely, we will exploit the
properties of the conditional entropyhn(e)5Hn11(e)

FIG. 3. Relative prediction errors~normalized by standard de
viation of the data! versus time delay for different embedding d
mensions. Noise configurations and coordinates used for embed
equal the corresponding values in Fig. 2.
05620
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2Hn(e), estimated by the correlation entropy

Hn~e!52 ln CS n,
e

2D52 lnF 2

~N2n!~N112n!

3(
i , j

QS e

2
2usW i2sW j u D G . ~8!

Here the Q(•) is the Heaviside step function,sW i are
n-dimensional delay vectors andN is the length of the data
sequence. It is well known that the conditional entrop
hn(e) behave ashn(e)5cn2 ln e for a stochastic process
where the constantscn are monotonically decreasing withn.
If the process is a Markov process of orderm, cn5c` for
all n.m. Hence, in a logarithmic representation of the co
ditional entropiesh1 , . . . ,hn for a Markov process of orde
m one findsm parallel but distinct lines. All curves forn
.m collapse onto the graph ofhm since there are no memo
ries present of orderm11 and higher, which could reduc
the entropy further.

The conditional entropiesh1 , . . . ,h5 are shown for the
process in Eq.~7!, for the cases where the noise is added
y @Fig. 4~a!# or to x @Figs. 4~b! and 4~c!#. In the case where
the process is Markovian of order 2~noise added toy, x
recorded! we find h2 , h3 , h4, and h5 collapsing onto a
single line for the range ofe values corresponding to th
stochastic regime. In the case where the noise is added to
observedx variable directly we find that on small-lengt
scales mainly the random motion around the limit cycle b
comes visible and higher-order memories are difficult to
tect using conditional entropies. Only in the last case we
that the noise introduces longer memories and creates
trivial higher-dimensional structures in phase space.

In summary, only in exceptional cases, an observed sc
time series can be assumed to be Markovian. However, f
the practical point of view, it seems that often~such as here!
the memory, albeit formally infinite, decays fast and hen
the process can be approximated by a finite-order Markov
process. If the error introduced by this approximation
smaller than other modeling errors caused by the finiten
of the data set, there is practically no difference between
Markov approximation and a hypothetical infinite memo
model.

IV. OPTIMAL EMBEDDING PARAMETERS

In a deterministic system a strict lower bound for the
mension ism>D, whereD is the number of active degree
of freedom @7#. The optimal value for the dimension ca
however, be larger, since the sufficient embedding requ
ment to obtain an unfolded attractor ism.2D. An estimate
of a proper value ofm can be obtained using the method
false neighbors@11#. Using embedding dimensions highe
than that necessary to unfold the attractor adds redundan
the neighbor search and worsens the performance of the
dictions due to the finite precision of the data and the limi
length of the time series.

The time lagt is not a subject of the embedding the

ing
1-5
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MARIO RAGWITZ AND HOLGER KANTZ PHYSICAL REVIEW E 65 056201
rems. In the limit of infinite precision of the data and in
nitely long time series, all values oft are equivalent. In a
practical situation, however, a good choice of the delay
crucial. If t is too large, successive elements of the emb
ding vector are almost independent and the vectors fi
large cloud in the reconstructed phase space. Ift is too
small, successive elements of the embedding vector
strongly correlated and all vectors are clustered around
diagonal. Meaningful neighborhoods are difficult to obtain

FIG. 4. Correlation entropiesh1 , . . . ,h5 for the attractors of the
van der Pol system with delayt535. Noise configurations and
coordinates used for embedding equal the corresponding valu
Fig. 2. The dashed line shows the functionf (e)52 ln(e)23.
05620
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both cases. These phase space considerations represen
metrical arguments to find a good delay, which have be
formalized by statistics such asfill factor @12# or displace-
ment from diagonal@13#. Since these are just recipes, it
often better to use the autocorrelation function~or the time
delayed mutual information@14# to account for all nonlinear
correlations!. The simplest reasonable estimate of an optim
delay is the first zero of the autocorrelation function of t
signal@1#. The striking point is that these estimates genera
yield too larget values for stochastic dynamical systems,
we will discuss here.

Now let us examine how the model parameters should
chosen in the case that the time series has been generat
a Langevin process. As pointed out in the preceding sec
one has to consider in general two different cases. One
sibility is that the time series represents a Markov proces
the order of the original multidimensional process given
the Langevin equation. In this case the optimal embedd
dimension is the order of the process and every further
formation, i.e., higher-dimensional embedding, only adds
dundancy. The second possibility is that the time series p
sesses an infinite memory due to the stochastic driving fo
in the Langevin equation. In this case every additional
mension adds information and increases the predictabilit

The way in which the unrecorded variables are recove
by the delay embedding tells us about the optimal de
Formally, we reproduce the hidden variables by introduc
higher derivatives of the measured variable. Since these
rivatives are practically replaced by the difference betwe
two values of the time series in the limit of vanishing tim
difference between these values, the delay should be in p
ciple as small as possible and hence the sampling interva
the time series. We will see from our examples that this is
case for high noise levels. For very small noise levels
evidently find that the optimal delay assumes the value fo
for deterministic case, e.g., the first zero of the autocorre
tion function. For intermediate noise levels the optimal de
interpolates monotonically in between these two limits. T
is illustrated in Fig. 5 for the van der Pol system@Eq. ~7!#,

in

FIG. 5. Relative prediction error versus delay for different no
levels for the van der Pol systemb50.5, 1.0, 3.0. The two curves
for b51.0 and 3.0 are rescaled by a factor of 1/2 and 1/4, resp
tively.
1-6
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FIG. 6. Two-dimensional projection of the phase portrait of the Lorenz system for different values of the delayt53, 10, and 30,
vanishing noise level@~a!–~c!# and noise levelb510.0 @~d!–~f!#. The relative prediction errore is also given in the graphs.
ive
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ing
when the second equation is driven by the noise andx is
measured.

As a second example we want to analyze the noise-dr
Lorenz system. The equations of motion are

ẋ56~y2x!,

ẏ528x2y2xz, ~9!

ż5xy2~13/6!z1bG.
05620
n

A time series of lengthN5100 000 was generated by in
tegrating these equations and sampling thex component ev-
ery 0.1 units of time. In Figs. 6~a!–6~c! we show three dif-
ferent values of the delay and for vanishing noise leve
two-dimensional projection of the phase portrait of this s
tem. For a small delay oft53 the phase portrait is centere
around the diagonal since consecutive values of the t
series are very similar. For an intermediate delay oft510
the attractor seems well unfolded. Larger delay times suc
t530 lead to complicated intersecting graphs. For vanish
1-7
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noise level the apparently simplest phase portrait@Fig. 6~b!#
leads to the minimal relative prediction errore, where the
absolute error is normalized by the variance of the datas.
However, the optimal value for the delay decreases as
noise level is increased. In Figs. 6~d!–6~f! we show phase
portraits of the Lorenz system with the same values of
delay as in Figs. 6~a!–6~c! but for a noise level ofb510.0.
Still the phase plot witht510 shows the best unfolded a
tractor by visual inspection. But this time the minimal pr
diction error is achieved with a delay oft53. Therefore, for
stochastic dynamical systems the visual inspection of
phase portrait as well as the first zero of the autocorrela
function might not be a good condition for choosing an o
timal value of the delay. We hence recommend an exp
optimization of the prediction errors with respect to the tim
lag t.

V. NONLINEAR FLUCTUATIONS IN STOCHASTIC
SYSTEMS

The issue of whether or not a stochastic process is lin
has strong implications on the magnitude of fluctuations a
function of time. Nonlinear fluctuations in Markovian pro
cesses can be identified using the suggested prediction
rithm. The idea is that if we use a linear process to predic
intrinsically nonlinear process, the predicted fluctuations
too small on an average. We hence analyze the probab
density function (PDF) of the incrementsD ŝT5 ŝn1T

model2sn

predicted by the AR model and by the locally consta
model, whereŝn1T

model is the value of the signal a timeT ahead
as predicted by either of the two models. Although it is po
sible that the difference of the average prediction error of
AR model and a nonlinear model is small, the PDF’s of t
predicted increments can differ clearly. This is due to the f
that long tails of the PDF of a nonlinear stochastic proc
have their origin in stochastic fluctuations as well as in n
linear correlations. The latter can be modeled by a nonlin
scheme but not by a linear algorithm.

For the noise-driven Duffing oscillator@Eq. ~6!# with a
520.5 andb50.5 the motion is essentially created by t
stochastic term—without noise the particle would come
rest—and the deterministic part of the dynamics is nonline
A time series of this process is shown in Fig. 7 using
sampling rate ofdt50.1. In Fig. 8 we show the PDF’s of th
linearly and nonlinearly predicted incrementsD ŝT5 ŝn1T

model

2sn . The locally constant predictor was run in a tw
dimensional embedding space with optimal delay oft
510dt, and the linear predictions were performed by us
an AR~2! model with equal time lag. The prediction horizo
wasT520dt.

We also show the PDF of the increments of the act
time series and of the increments modeled by knowing
exact deterministic part of the equations of motion~6!.
Whereas the AR model is unable to capture the large in
ments of the signal, the locally constant scheme gives a g
approximation to the PDF produced by the deterministic p
of the equations of motion.

If the locally constant model was able to capture the
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terministic part of the Markovian dynamics, all prediction
should be correct on average. In the same sense, the
dicted increment, i.e., the difference between the predic
value ŝn1T and the actual valuesn , should be correct on
average. This means that if one predicts an incrementD ŝT

5 ŝn1T2sn in a number ofk situations the average of th
actually measured incrementsDsT in these situations should
converge towardsD ŝT for largek.

Using this statistics we observe a significant differen
between the two prediction schemes as is shown in Fig
Whereas the locally constant predictor gives the accurate
crements on average, the linear model systematically un
estimates the fluctuations. The AR~2! model is unable to fit
the nonlinear deterministic part of the process. Thus it
shown that a locally constant model captures the nonlin
deterministic dynamics of this second-order Markovian p
cess and the suggested statistics can be used to detect
linearity in a time series, whereas in this case the aver
prediction errors of the two models are very similar.

The scheme developed above will now be applied to s
face wind velocities of the atmospheric boundary layer.
studied in Ref.@15# for the prediction of surface wind veloci

FIG. 7. Variablex versus timet for the Duffing oscillator.

FIG. 8. PDF of the increments of thex variable of system 6.
Also shown are the increments predicted by the linear~AR! and by
the nonlinear models~zero! as well as the increments predicted b
knowing the exact deterministic part of the equations of motion
1-8
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ties, no reduction of the average prediction error can
achieved using a nonlinear scheme instead of a lin
scheme. Improvement of the nonlinear model is possi
however, in situations where a large increase of the w
speed is predicted by the nonlinear algorithm. This beha
can be understood in a more general fashion using the fra
work of Markov models.

We use data recorded on the Lammefjord on the isl
Seeland in Denmark. The terrain around the measurem
station is very flat and no major obstacles interfere with
fluid flow. One component of the wind velocity was record
with a sampling rate of 8 Hz using an ultrasonic anemome
located at an altitude of 10 m during a period of 24 h.
typical time series of the wind velocity is shown in Fig. 1

FIG. 9. Actually measured incrementDsT and AR-predicted in-

crementD ŝT
AR versus the incrementD ŝT

zero predicted by the locally
constant scheme.

FIG. 10. Time series of the total wind velocity during a peri
of 1 h recorded on the Lammefjord in Denmark with a sampl
rate of 8 Hz.
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The signal appears highly disorganized and presents s
tures on all time scales.

Our analysis again relies on the prediction of the wi
velocities using a locally constant predictor in te
dimensional embedding space and an AR~10! model ~em-
ploying time lag of unity!, with a prediction horizonT of 20
sampling intervals. We show in Fig. 11 the right-hand bran
of the PDF of the predicted increments as well as the PDF
the increments of the time series. As in the Duffing syste
one can see a difference between the PDF’s of the increm
predicted by the linear and by the nonlinear models. T
latter predicts larger fluctuations of the signal. Next we w
show that these large fluctuations predicted by the nonlin
scheme give on an average a better representation of the
increments than the linear model in these situations.

Figure 12 shows the measured increments and the in
ments predicted by the AR model and the nonlinear mo

FIG. 11. Positive branch of the PDF of the increments of
time series of the surface wind. Also shown are the increme
predicted by the linear@AR~10!# and by the nonlinear model~zero!
with embedding dimensionm510.

FIG. 12. Actually measured incrementDsT and AR-predicted

incrementD ŝT
AR versus the incrementD ŝT

zero predicted by the lo-
cally constant scheme with embedding dimensionm510.
1-9
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versus the increment predicted by the nonlinear scheme
observe a similar behavior as for the Duffing oscillat
whereas the locally constant model gives a satisfying re
sentation of the increments that the AR model significan
underestimates on an average. This shows that the da
surface wind velocities are essentially nonlinear and a n
linear model is able to fit nonlinear fluctuations.

We have chosen the embedding dimensionm510 be-
cause this value is large enough to obtain nontrivial pred
tions and sufficiently low in order to keep the computation
effort manageable. Since there is noa priori optimal value
for m in higher-dimensional systems as for the surface wi
we consider the lastm measurements to contain the domina
information on the transition probabilities and the earl
events to be corrections thereof. We want to demonst
now that the result presented above is valid for a range
different values ofm. This is shown in Figs. 13 and 14 fo
the valuesm55 andm515. The qualitative behavior is th
same as in Figs. 11 and 12.

FIG. 13. Positive branch of the PDF of the increments of
signal and that given by the predictors as in Fig. 11, but for emb
ding dimensions ofm55 andm515.

FIG. 14. Actually measured incrementDsT and AR-predicted

incrementD ŝT
AR versus the incrementD ŝT

zero predicted by the lo-
cally constant scheme for embedding dimensions ofm55 andm
515.
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VI. NONLINEAR MEASUREMENT FUNCTION

An important and typical situation is that the output of
linear system is measured by a nonlinear function. This
duces nonlinear correlations in the data. Especially if
measurement function is unknown or not invertible, one h
to resort to a nonlinear algorithm to model the time series.
compare the predicting power of a nonlinear model an
linear model on data transformed by a nonlinear function
use a method suggested by Casdagli@3#. Using this statistics
one can tune between a globally linear model and a lo
model by computing the one-step prediction error for t
linear approximation as a function of the neighborhood s
diam(U). For small neighborhood size diam, one has a lo
model but for neighborhoods in the limit of the attractor si
the predictions are given by the AR model. Let us investig
this statistics for an AR~2! process, namely,xn115a1xn
1a2xn211Gn with the measurement functionsn

5sgn(xn)Auxnu and a151.985 anda2520.995. In Fig. 15
the average forecast errors of the local linear models a
function of the number of neighbors used for fitting the mo
els are shown for both the sequences$sn% and$xn%.

e
d-

FIG. 15. The average forecast errors of local linear models a
function of the number of neighbors used for the fits, for$xn% ~con-
tinuous! and$sn% ~dashed! of the AR~2! process~see text!.

FIG. 16. Relative prediction error of the linear model~AR! and
of the nonlinear model~zero! for the power output of a wind turbine
versus prediction horizon.
1-10
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For the direct output$xn% of the linear process the AR
model gives slightly better predictions than the local mo
due to its higher statistical robustness. However, if the ou
of the linear system is nonlinearly transformed a nonlin
model can be significantly better.

As an example of practical importance we consider n
the power output of a wind turbine, which behaves as
third power of the wind speed. Consequently, if one cons
ers the longitudinal component of the velocity of the atm
spherev l as the independent variable of a dynamical syst
the power outputP would be a transformation of that var
able through measurement functionP5v l

3 . The actual mea-
surement function is more complicated, however, due to
offs at a minimal and a maximal velocity and because
additional technical details of a wind turbine. Linear corr
lations in the velocity signal are transformed into nonline
ones by the action of the nonlinear measurement funct
This on an average leads to improved predictability of
power signal if one uses a nonlinear model despite the
that the mean prediction error of the velocity signal its
does not decrease by the use of a nonlinear scheme. F
time series of the power output of a wind turbine, the relat
forecast errors«model/s versus the prediction horizon ar
shown in Fig. 16 for the linear as well as for the nonline
models. Also shown is the prediction error using the l
value as prediction for the next one~persistence!. The im-
provement using the nonlinear scheme amounts on an a
age upto 10% of the prediction error of the linear mod
More important than this averaged improvement is this
havior of the nonlinear model when large fluctuations oc
in the time series. For this we show the PDF of the inc
ments of the data, of the nonlinearly predicted increme
and the PDF of the increments predicted by the AR mode
Fig. 17 for a prediction horizon of 1s. Whereas the AR

FIG. 17. PDF’s of the increments of the data, of the linear mo
~AR!, and of the nonlinear model~zero! for the power output for a
prediction horizon of 1s.
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model is unable to capture the large fluctuations, the non
ear scheme almost resembles the data. Finally, we wan
show that the large fluctuations predicted by the nonlin
scheme really occur correlated with the increments of
actual data. In Fig. 18 the average increment predicted
either of the models~plus/minus the standard deviation fo
the nonlinear model! is shown versus the actual incremen
of the data. An optimal predictor would correspond to t
diagonal in this figure. The graphs show an asymmetry t
is due to the fact that the power output has an upper cu
Therefore, a decrease of the power data is often imposs
to predict, since it is not preceded by a typical pattern of
time series.

VII. CONCLUDING REMARKS

We have discussed the application of a locally const
predictor in a reconstructed phase space to stochastic da
contrast to previous work where enhanced predictability
time series data by such a scheme was interpreted as a
nature of determinism, we show here that this model
scheme represents an empirical Markov model for the d
Despite the fact that scalar time series typically does
represent a Markov process, the approximation is rather g
in many applications. We have compared the practical iss
of modeling stochastic data to the modeling of determinis
data, where, e.g., one surprising result is the need of m
shorter values of the time lagt in the embedding procedure
The width of the transition probability allows one to estima
the precision of the prediction, and the statistics of the fl
tuations gives an estimate of the degree of nonlinearity in
data. We have applied this scheme with considerable suc
to field measurements with low predictability, namely, su
face wind velocities.

l FIG. 18. Increments predicted by the nonlinear model~plus/
minus standard deviation! and by the linear model versus the incr
ments of the data.
1-11
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